The Ultimate Upgrade Kit

For a limited time we are pairing our latest and best products for you, the discerning biohacker. Get the NExT and VivoKey Spark in one kit – that’s 3 chips in the physical space of two, all at the price of one!!! AND there’s extra goodies we’re throwing in!

More Details X-Series FAQ Partner Map

$119.99$199.99

Clear

More Details

WARNING This kit definitely contains dangerous things. While the NExT chip and VivoKey Spark have both undergone several quality checks during manufacture and has been put through a battery of tests, it has not been certified by any government regulatory agency for implantation or use inside the human body. Use of this device is strictly at your own risk.

Maximum Awesome

All Ultimate kit options include the NExT and VivoKey Spark chip implants. The NExT contains 2 chips in one implant to maximize hand real estate – that’s 3 chips in the physical space of two, all at the price of one!!!

The NExT was designed by Dangerous Things to include the equivalent of an xNT (13.56MHz NTAG216 NFC) and xEM (125kHz T5577 RFID) chip in one product. The NFC side (xNT) works with NFC capable smartphones, certain commercial access control systems and door locks, and USB contactless ISO14443A readers. The RFID side (xEM) is a T5577 emulator chip that can behave like many different common 125kHz low frequency chip types, including EM41xx, EM4200, HID 1326 ProxCard II, HID 1346 ProxCard III, Indala (and more!) access cards and keyfobs.

The VivoKey Spark is a product designed and manufactured by VivoKey Technologies, makers of the only cryptobionic implants capable of performing strong cryptographic functions in vivo. The Spark is a 13.56MHz ISO15693 and NFC Type 5 compliant, readable by all NFC reader devices including all NFC capable smartphones and USB readers that are capable of reading ISO15693 chips. The Spark is plug and play! There is nothing to program, and it is cryptographically secure. It works with the VivoKey app to configure scan behavior and expand your capabilities.

Unlike other NFC implants, the VivoKey Spark is not a simple NFC chip, it is a secure link to the future. With the Spark, you aren’t just upgrading yourself, you are becoming part of the most advanced cryptobionic community in the world and your new digital capabilities will keep expanding as the VivoKey platform grows. Welcome to the future.

Check here for more information on the Spark and how it fits into the VivoKey ecosystem.

Common Kit Contents

  • 1 sterile injector assembly, pre-loaded with a NExT dual chip implant
  • 1 sterile injector assembly, pre-loaded with a VivoKey Spark chip implant
  • 4 single use ChloraPrep antiseptic wipes
  • 2 sterile gauze pad for post-injection wound care
  • 2 sterile expandable-fabric adhesive bandage
  • 2 pair of non-sterile, non-latex procedure gloves

All Ultimate kit options contain a NExT dual chip implant and VivoKey Spark. Both are pre-loaded inside their respective injector assemblies, and kits include all the sterile procedure materials required for a professional to perform installation. Both chips are encased in biologically safe Schott 8625 bioglass. The bioglass cylinders are laser sealed, the finished chip implant is tested for function before loading into the injector assembly, and the whole injector assembly with chip inside is EO gas sterilized.
 

Ultimate Kit extras – our best value!

If you’re ready to upgrade your meat sack with next generation implant tech and immediately start building cyber-solutions, you need the ultimate cyborg transformation kit! All Ultimate kit options contain a NExT dual chip implant and VivoKey Spark. Along with these great implants, you also get:

  • 1 xLED-LF 125kHz Field Tester
  • 1 xLED-HF 13.56MHz Field Tester
  • 1 RFID Diagnostic Card

Our xLED field testers will show you the best position and orientation to present your NExT implant to any compatible HF & LF readers, while our RFID Diagnostic Card will tell you all about the frequency and duty cycles of random readers you encounter in the wild.

A review of the RFID Diagnostic Card & xLED Field Test devices

Ultimate MAX – better than best value!

The Ultimate MAX kit includes everything in the Ultimate kit, plus some additional goodies!

  • 1 xEM Access Controller
  • 1 Dangerous KBR1 Reader
  • 1 PN532 Reader Module

In only a few minutes you can build an access control project with our xEM Access Controller to let you open your room, house, or garage door with a wave of your hand.. or with a little more tinkering, unlock your car or even start your motorcycle! In addition to that, our KBR1 reader acts as a USB keyboard that “types out” the UID serial number of your NExT, enabling a simple computer logon solution. If you’re a Arduino fan, the included PN532 module can NFC enable your custom project and read your NExT!
 

Important Things To Know

Please expand the sections below to read up on things like performance expectations, return policy, installation procedure, etc.

Chip Specifications
NExT Chip Specifications
The NExT chip contains two completely separate transponders in a single device. Each inductor coil antenna and chip in the NExT are specifically tuned to accommodate co-operation within the same device.

    NExT Basic Specifications

    • Encased in 2.1mm by 14mm bioglass with non-toxic epoxy
    • Pre-tested and pre-loaded into sterile injection assembly
    • No “anti-migration” coating means easy removal/replacement

    NExT 13.56MHz NTAG216 NFC Type 2 chip

    • 13.56MHz ISO14443A & NFC Type 2 compliant NTAG216 NFC chip
    • Full datasheet for the NXP NTAG216 RFID/NFC chip
    • 7 byte UID and 886 bytes of user read/write memory
    • 10 year data retention. Rated for 100k writes per memory block.

    NExT 125kHz Atmel T5577 RFID emulator chip

    • 125kHz Atmel T5577 RFID emulator chip
    • Full datasheet for the Atmel ATA5577 chip
    • Can emulate EM41xx, EM4200, HID ProxCards, and Indala

    VivoKey Spark Chip Specifications

    • 13.56MHz ISO15693 & NFC Type 5 compliant RFID chipset
    • AES128 encryption function with 2 byte payload salt
    • Encased in 2.1mm by 12mm bioglass with non-toxic epoxy
    • Pre-tested and pre-loaded in sterile injection assembly
    Testing process, return policy, lifetime warranty
    Testing Process
    Our x-series chips come pre-loaded inside injector systems with steel needles and cannot typically be read while inside the needle. Because of this, we perform a full test on every x-series tag before it is loaded into the injector assembly and sterilized. We have also conducted several tests on our x-series chips and cataloged those tests here.

    Return Policy
    We offer a 30-day money back guarantee! Read all about it on our return policy page.

    Lifetime Warranty
    If you do purchase one of our products and experience a failure, we offer a full lifetime warranty on all of our products. You will need to return the product for testing and analysis, and if it is malfunctioning, we will ship you a replacement free of charge. Read all about it on our warranty policy page.

    Practical read range/performance expectation
    Passive RFID and NFC chips are magnetically coupled devices that power themselves and communicate data over a shared magnetic field the reader generates. This means their effective read range and performance depends entirely on how well the antenna coils of both the chip and reader couple with each other. This typically means the shape, size, and orientation of both antennas must be complimentary.

    Unfortunately our x-series chips have a cylindrical coil antenna while most readers have a flat spiral plane antenna. This means that correct positioning your x-series chip is critical. This is why we include our RFID Diagnostic Card and xLED Field Tester! Watch this video;

    A review of the RFID Diagnostic Card & xLED Field Test devices


    How/where are x-series chips installed? Aftercare? What to expect?
    Our x-series transponders are typically installed into the webbing between the metacarpal bones of the index finger and thumb, resting parallel to the index metacarpal. The reason they are installed in the hand has to do with the extremely short read range of x-series chips and the typical use case being some form of access control where the tag must be presented to a fixed reader of some kind. The suggested placement within the hand was chosen due to the lack of major nerve bundles or blood vessels running through that area.

    Achieving a safe installation definitely requires a steady hand and experience performing aseptic procedures. Dangerous Things prefers our customers locate one of our professional body piercing or body modification partners to complete the installation of this product. If no partners are available in your area, you should be able to follow this guide to finding a professional in your area who is willing to assist you. For aftercare information and what to expect, please read our X-Series FAQ page.

    Can I get an MRI? What about airport security? Playing sports? etc.
    You have questions! That’s understandable. The short answer is; it’s all good. If you’re looking for more specific answers, we have an extensive FAQ page that deals with many of the most commonly asked questions regarding installation of our x-series transponders.
    NExT NTAG216 Security
    The NTAG216 chip inside the NExT was designed for use in more typical NFC applications such as smart posters, labels, and other disposable use cases where the memory contents would typically be written and then locked so it could not be changed. This is done using built-in “lock bytes” which are OTP (one time programmable). That means that once the lock bytes are turned on to protect memory blocks, they can never be unlocked. Once any memory block is locked, it will forever be read-only, which is not ideal for the NExT. Many NFC applications offer ways to “lock” or “protect” your tag, which will end up locking the tag read-only. Because of this, we have disabled the ability to change or set the lock bits in the NExT’s NTAG216 chip.

    Before disabling the lock bytes however, there is one page of user memory we do lock down as read-only. That is the CC or Capability Container, located in memory page 03. This page of 4 bytes is required to have a specific format of data so the tag can be recognized and used as an NFC Type 2 tag. This memory page is also special in that the data stored there uses OTP bits, or “One Time Programmable” bits, meaning once a bit is flipped from 0 to 1, it cannot be flipped back to 0. It is critical that this memory page be locked as read-only so a malicious attacker can’t mess up your Capability Container, thus ruining the chip for use as an NFC compliant transponder. We set lock bytes to mark the Capability Container as read-only, then we disable the lock bytes so no other memory pages can be permanently set as read-only.

    In addition to lock bytes, the NTAG216 offers a 32bit password protection function. It can be used to password-protect just writing to or both reading from and writing to the user memory space of the NTAG216 chip. Regardless of what some NFC smartphone apps indicate, it is not possible to remove or disable the password. It is only possible to set the password to the default hexadecimal value of 0xFF 0xFF 0xFF 0xFF. If the password is set to the default value, then anyone could easily authenticate, change the password, then write data or change protection options for your tag, and change the password to some unknown value. Because it is also possible to protect memory blocks from unauthenticated reads using a password, this could make the tag completely useless by not allowing any memory blocks to even be read. We set a default password value of 0x44 0x4E 0x47 0x52 or DNGR, but strongly suggest you change it after installation.

    Finally, many of the critical configuration bytes used by the NTAG216 chip are stored in the last few memory pages of the tag. This means that it may be possible for an NFC application that does not properly detect or honor the NExT’s NTAG216 chip memory schema to accidentally attempt to write binary or NDEF record data (the data you’re trying to store on the tag) overtop of the configuration bytes. For example, if the data you are attempting to write is longer than the user memory blocks available, the remainder of the data might be written overtop of configuration bytes, which contain settings that are potentially dangerous to modify such as the config lock byte. It is not possible to disable the configuration lock byte, so accidentally writing to that byte could result in your configuration being irreversibly locked. We password-protect the configuration bytes from being able to be written to or updated using the password feature of the NTAG216 chip. Overall, the NExT leaves the factory with the entire user memory space accessible and writable, while at the same time the configuration bytes and password values at the bottom end of the NTAG216 chip’s memory space are protected.

    Once your NExT is installed, you’ll be able to use any NFC smartphone app to write data to the tag and not need to be afraid of accidentally locking the tag, or changing the configuration bytes, or someone maliciously locking your tag or changing your password. We suggest using NXP’s TagWriter app.